1,160 research outputs found

    Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer.

    Get PDF
    The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3-2.2 GHz, d is ~9 μm, and the devices have a Q-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass.This work was supported by the NSFC (Nos. 61376118, 61171038, 61274037, 61204124 and 61301046), the Fundamental Research Funds for the Central Universities (Nos.2014QNA5002 and 2012QNA5010), and Research Fund for the Doctoral Program of Higher Education of China (20120101110054, 20120101110031). The authors thank the Innovation Platform for Micro/Nano Device and System Integration and Cyrus Tang Centre for Sensor Materials and Applications at Zhejiang University.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep0951

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3

    Get PDF
    Background: ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH). / Methods: We utilized whole-exome sequencing (WES), bioinformatics, and computational modeling to identify and characterize novel ATP1A3 mutations in a patient with CH. We performed immunohistochemical studies using mouse embryonic brain tissues to characterize Atp1a3 expression during brain development. / Results: We identified two germline mutations in ATP1A3 (p. Arg19Cys and p.Arg463Cys), each of which was inherited from one of the patient’s unaffected parents, in a single patient with severe obstructive CH due to aqueductal stenosis, along with open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum. Both mutations are predicted to be highly deleterious and impair protein stability. Immunohistochemical studies demonstrate robust Atp1a3 expression in neural stem cells (NSCs), differentiated neurons, and choroid plexus of the mouse embryonic brain. / Conclusion: These data provide the first evidence of a recessive human phenotype associated with mutations in ATP1A3, and implicate impaired Na+/K+ ATPase function in the pathogenesis of CH

    FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the <it>r</it><sup>2 </sup>LD statistic have gained popularity because <it>r</it><sup>2 </sup>is directly related to statistical power to detect disease associations. Most of existing <it>r</it><sup>2 </sup>based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.</p> <p>Results</p> <p>We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.</p> <p>FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when <it>r</it><sup>2 </sup>≥ 0.9.</p> <p>Conclusions</p> <p>Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.</p

    A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    Get PDF
    J.Z. acknowledge the support from the National Nature Science Foundation of China (61571218, 61571216, 61301017, 61371034, 61101011), and the Ph.D. Programs Foundation of Ministry of Education of China (20120091110032, 20110091120052). Y. H. acknowledge the support from the UK EPSRC under the QUEST Programme Grant (EP/I034548/1)

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Severe and Persistent Depletion of Circulating Plasmacytoid Dendritic Cells in Patients with 2009 Pandemic H1N1 Infection

    Get PDF
    Background: Dysregulation of host immune responses plays a critical role in the pathogenesis of severe 2009 pandemic H1N1 infection. Whether H1N1 virus could escape innate immune defense in vivo remains to be investigated. The aim of this study was to evaluate the pattern of innate immune response during human 2009 H1N1 infection. We performed the enumeration of circulating myeloid dendritic cells (mDC) and plasmacytoid DC (pDC) in blood from patients with H1N1 pneumonia shortly after the onset of symptoms and during follow-up at different intervals of time. The analysis of CD4 and CD8 count, CD38 T-cell activation marker and serum cytokine/chemokine plasma levels was also done. Methodology/Principal Findings: Blood samples were collected from 13 hospitalized patients with confirmed H1N1-related pneumonia at time of admission and at weeks 1, 4, and 16 of follow-up. 13 healthy donors were enrolled as controls. In the acute phase of the disease, H1N1-infected patients exhibited a significant depletion in both circulating pDC and mDC in conjunction with a decrease of CD4 and CD8 T cell count. In addition, we found plasmatic hyperproduction of IP-10 and RANTES, whereas increase in T-cell immune activation was found at all time points. When we assessed the changes in DC count over time, we observed a progressive normalization of mDC number. On the contrary, H1N1-infected patients did not achieve a complete recovery of pDC count as values remained lower than healthy controls even after 16 weeks of follow-up. Conclusions: H1N1 disease is associated with a profound depletion of DC subsets. The persistence of pDC deficit for several weeks after disease recovery could be due to H1N1 virus itself or to a preexisting impairment of innate immunity
    corecore